FUNCIONES BOOLEANAS
Definición : La función booleanas F(x,y) con valores 1 donde x = 1 e y = 0 y el valor 0 para todas las otras elecciones x e y. Las funciones booleanas pueden ser representadas usando expresiones con variables y operaciones booleanas.
x
|
y
|
F(x, y)
|
1
|
1
|
0
|
1
|
0
|
1
|
0
|
1
|
0
|
0
|
0
|
0
|
Cada expresión booleana representa una función. El valor de la función es obtenido sustituyendo 0 y 1 por los valores de las variables en la expresión.
x
|
y
|
z
|
x•y
|
¬x
|
F(x, y,z) =x•y +¬z
|
1
|
1
|
1
|
1
|
0
|
1
|
1
|
1
|
0
|
1
|
1
|
1
|
1
|
0
|
1
|
0
|
0
|
0
|
1
|
0
|
0
|
0
|
1
|
1
|
0
|
1
|
1
|
0
|
0
|
0
|
0
|
1
|
0
|
0
|
1
|
1
|
0
|
0
|
1
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
1
|
1
|
Las funciones booleanas F y G de n variables son iguales si y solo si F(b1, b2, ..., bn) = G(b1, b2, ..., bn). Dos funciones diferentes que tienen los mismos valores de verdad en su tabla son llamadas equivalentes. El complemento de una función booleana F es la función ¬F, donde ¬F(x1, x2, ..., xn) = ¬(F(x1, x2, ..., xn).
La suma booleana F + G y el producto FG es definido por (F + G)(x1, x2, ..., xn) = F(x1, x2, ..., xn) + G(x1, x2, ..., xn) y (FG)(x1, x2, ...,xn) = F(x1, x2, ...,xn) G(x1, x2, ...,xn).